Pyro: A Spatial-Temporal Big-Data Storage System

Shen Li* Shaohan Hu* Raghu Gantif

“University of Illinois at Urbana-Champaign

Abstract

With the rapid growth of mobile devices and applica-
tions, geo-tagged data has become a major workload for
big data storage systems. In order to achieve scalability,
existing solutions build an additional index layer above
general purpose distributed data stores. Fulfilling the se-
mantic level need, this approach, however, leaves a lot
to be desired for execution efficiency, especially when
users query for moving objects within a high resolution
geometric area, which we call geometry queries. Such
geometry queries translate to a much larger set of range
scans, forcing the backend to handle orders of mag-
nitude more requests. Moreover, spatial-temporal ap-
plications naturally create dynamic workload hotspotsﬂ
which pushes beyond the design scope of existing solu-
tions. This paper presents Pyro, a spatial-temporal big-
data storage system tailored for high resolution geometry
queries and dynamic hotspots. Pyro understands geome-
tries internally, which allows range scans of a geometry
query to be aggregately optimized. Moreover, Pyro em-
ploys a novel replica placement policy in the DFS layer
that allows Pyro to split a region without losing data
locality benefits. Our evaluations use NYC taxi trace
data and an 80-server cluster. Results show that Pyro
reduces the response time by 60X on 1kmx 1km rectan-
gle geometries compared to the state-of-the-art solutions.
Pyro further achieves 10X throughput improvement on
100m x 100m rectangle geometrie

1 Introduction

The popularity of mobile devices is growing at an un-
precedented rate. According to the report published
by the United Nations International Telecommunication
Union [1]], mobile penetration rates are now about equal
to the global population. Thanks to positioning modules
in mobile devices, a great amount of information gener-
ated today is tagged with geographic locations. For ex-
ample, users can share tweets and Instagram images with
location information with family and friends; taxi com-
panies collect pick-up and drop-off events data with geo-
graphic location information as well. The abundances of
geo-tagged data give birth to a whole range of applica-
tions that issue spatial-temporal queries. These queries,

I'The hotspot in this paper refers to a geographic region that receives
a large amount of geometry queries within a certain amount of time.

2The reason of using small geometries in this experiment is that the
baseline solution results in excessively long delay when handling even
a single large geometry.

Mudhakar Srivatsal Tarek Abdelzaher”
TIBM Research

which we call geometry queries, request information
about moving objects within a user-defined geometric
area. Despite the urgent need, no existing systems man-
age to meet both the scalability and efficiency require-
ments for spatial-temporal data. For example, geospa-
tial databases [2]] are optimized for spatial data, but usu-
ally fall short on scalability on handling big-data appli-
cations, whereas distributed data stores [3} 14} |5, 6] scale
well but quite often yield inefficiencies when dealing
with geometry queries.

Distributed data stores, such as HBase [3]], Cassan-
dra [4], and DynamoDB [5]], have been widely used for
big-data storage applications. Their key distribution al-
gorithms can be categorized into two classes: random
partitioning and ordered partitioning. The former ran-
domly distributes keys into servers, while the latter di-
vides the key space into subregions such that all keys in
the same subregion are hosted by the same server. Com-
pared to random partitioning, ordered partitioning con-
siderably benefits range scans, as querying all servers in
the cluster can then be avoided. Therefore, existing so-
lutions for spatial-temporal big-data applications, such
as MD-HBase [7]], and ST-HBase [8]], build index layers
above the ordered-partitioned HBase to translate a geom-
etry query into a set of range scans. Then, they submit
those range scans to HBase, and aggregate the returned
data from HBase to answer the query source, inheriting
scalability properties from HBase. Although these so-
lutions fulfill the semantic level requirement of spatial-
temporal applications, moving hotspots and large geom-
etry queries still cannot be handled efficiently.

Spatial-temporal applications naturally generate mov-
ing workload hotspots. Imagine a million people si-
multaneously whistle taxis after the New Year’s Eve at
NYC’s Times Square. Or during every morning rush
hour, people driving into the city central business district
search for the least congested routes. Ordered partition-
ing data stores usually mitigate hotspots by splitting an
overloaded region into multiple daughter regions, which
can then be moved into different servers. Nevertheless,
as region data may still stay in the parent region’s server,
the split operation prevents daughter regions from enjoy-
ing data locality benefits. Take HBase as an example.
Region servers in HBase usually co-locate with HDFS
datanodes. Under this deployment, one replica of all
region data writes to the region server’s storage disks,
which allows get/scan requests to be served using local

www.manaraa.com

L

HRegion Geometry Translator

Store Store

[StoreFile][StoreFile] [StoreFile][StoreFile]

PyroDB

[Multi-Scan Optimizer]

[Multi-Scan Optimizer]
L

Master Node W@ DFS Client

Repllca Sl Group-Based Replica Placement Policy]

DDD

DataNode

PyroDFS

’ ‘ DataNode ’ ‘ DataNode ’

D Modules Exist in D Modules Introduced by
HDFS and HBase PyroDB and PyroDFS

Figure 1: Pyro Architecture

data. Other replicas spread randomly in the entire cluster.
Splitting and moving a region into other servers disable
data locality benefits, forcing daughter regions to fetch
data from remote servers. Therefore, moving hotspots
often lead to performance degradation.

In this paper, we present Pyro, a holistic spatial-
temporal big-data storage system tailored for high reso-
lution geometry queries and moving hotspots. Pyro con-
sists of PyroDB and PyroDFS, corresponding to HBase
and HDFS respectively. This paper makes three ma-
jor contributions. First, PyroDB internally implements
Moore encoding to efficiently translate geometry queries
into range scans. Second, PyroDB aggregately mini-
mizes IO latencies of the multiple range scans gener-
ated by the same geometry query using dynamic pro-
gramming. Third, PyroDFS employs a novel DFS
block grouping algorithm that allows Pyro to preserve
data locality benefits when PyroDB splits regions during
hotspots dynamics. Pyro is implemented by adding 891
lines of code into Hadoop-2.4.1, and another 7344 lines
of code into HBase-0.99. Experiments using NYC taxi
dataset [9, [10] show that Pyro reduces the response time
by 60X on lkm x 1km rectangle geometries. Pyro further
achieves 10X throughput improvement on 100m x 100m
rectangle geometries.

The remainder of this paper is organized as follows.
Section [2] provides background and design overview.
Then, major designs are described in Section [3] Imple-
mentations and evaluations are presented in Sections
and [5| respectively. We survey related work in Section [6]
Finally, Section [7]concludes the paper.

2 Design Overview

Pyro consists of PyroDB and PyroDFS. The design of
PyroDB and PyroDFS are based on HBase and HDFS
respectively. Figure|l|shows the high-level architecture,
where shaded modules are introduced by Pyro.

2.1 Background

HDFS [11] is an open source software based on GFS
[12]. Due to its prominent fame and universal deploy-
ment, we skip the background description.

HBase is a distributed, non-relational database run-
ning on top of HDFS. Following the design of BigTable
[13], HBase organizes data into a 3D table of rows,
columns, and cell versions. Each column belongs to a
column family. HBase stores the 3D table as a key-value
store. The key consists of row key, column family key,
column qualifier, and timestamp. The value contains the
data stored in the cell.

In HBase, the entire key space is partitioned into re-
gions, with each region served by an HRegion instance.
HRegion manages each column family using a Store.
Each Store contains one MemStore and multiple Store-
Files. In the write path, the data first stays in the Mem-
Store. When the MemStore reaches some pre-defined
flush threshold, all key-value pairs in the MemStore are
sorted and flushed into a new StoreFile in HDFS. Each
StoreFile wraps an HFile, consisting of a series of data
blocks followed by meta blocks. In this paper, we use
meta blocks to refer to all blocks that store meta, data
index, or meta index. In the read path, a request first de-
termines the right HRegions to query, then it searches all
StoreFiles in those regions to find target key-value pairs.

As the number of StoreFiles increases, HBase merges
them into larger StoreFiles to reduce the overhead of read
operations. When the size of a store increases beyond a
threshold, its HRegion splits into two daughter regions,
with each region handles roughly half of its parent’s key-
space. The two daughter regions initially create refer-
ence files pointing back to StoreFiles of their past parent
region. This design postpones the overhead of copying
region data to daughter region servers at the cost of los-
ing data locality benefits. The next major compaction
materializes the reference files into real StoreFiles.

HBase has become a famous big-data storage sys-
tem for structured data [[14], including data for location-
based services. Many location-based services share the
same request primitive that queries information about
moving objects within a given geometry, which we call
geometry queries. Unfortunately, HBase suffers inef-
ficiencies when serving geometry queries. All cells
in HBase are ordered based on their keys in a one-
dimensional space. Casting a geometry into that one-
dimensional space inevitably results in multiple dis-
joint range scans. HBase handles those range scans
individually, preventing queries to be aggregately opti-
mized. Moreover, location-based workloads naturally
create moving hotspots in the backend, requiring respon-
sive resource elasticity in every HRegion. HBase handles
workload hotspots by efficiently splitting regions, which
sacrifices data locality benefits for newly created daugh-

www.manaraa.com

ter regions. Without data locality, requests will suffer
increased response time after splits. Above observations
motivate us to design Pyro, a data store specifically tai-
lored for geometry queries.

2.2 Architecture

Figure [T|shows the high-level architecture of Pyro. Pyro
internally uses Moore encoding algorithm [15} [16] [17}
18] to cast two-dimensional data into one-dimensional
Moore index, which is enclosed as part of the row key.
For geometry queries, the Geometry Translator module
first applies the same Moore encoding algorithm to cal-
culate scan ranges. Then, the Multi-Scan Optimizer com-
putes the optimal read strategy such that the 10 latency
is minimized. Sections [3.1)and [3.2] present more details.

Pyro relies on the group-based replica placement pol-

icy in PyroDFS to guarantee data locality during region
splits. To achieve that, each StoreFile is divided into mul-
tiple shards based on user-defined pre-split keys. Then,
Pyro organizes DFS replicas of all shards into elaborately
designed groups. Replicas in the same group are stored
in the same physical server. After one or multiple splits,
each daughter region is guaranteed to find at least one
replica of all its region data within one group. To pre-
serve data locality, Pyro just need to move the daughter
region into the physical server hosting that group. The
details of group-based replica placement are described
in section[3.3l

Pyro makes three major contributions:

e Geometry Translation: Apart from previous solu-
tions that build an index layer above HBase, Pyro
internally implements efficient geometry translation
algorithms based on Moore encoding. This design
allows Pyro to optimize a geometry query by glob-
ally processing all its range scans together.

e Multi-Scan Optimization: After geometry transla-
tion, the multi-scan optimizer aggregately processes
the generated range scans to minimize the response
time of the geometry query. By using storage media
performance profiles as inputs, the multi-scan opti-
mizer employs a dynamic programming algorithm
to calculate the optimal HBase blocks to fetch.

e Block Grouping: To deal with moving hotspots,
Pyro relies on a novel data block grouping algo-
rithm in the DFS layer to split a region quickly and
efficiently, while preserving data locality benefits.
Moreover, by treating meta block and data block
differently, block grouping helps to improve Pyro’s
fault tolerance.

3 System Design

We first present the geometry translation and multi-
scan optimization in Sections and [3.2] respectively.
These twosolutionsshelp tosefficiently process geometry

ol 1213 o1 | 4|5 -0 A5/}

45|67 23| 657 2 113

g|9ofwo|n g9 | a3 | | s 4 10
C//‘/./l

1213424115 | | 10-{-21 | 1415 | | 6~|-7—f-8—{-9

(a) Strip-Encoding (b) ZOrder-Encoding (c) Moore-Encoding

Figure 2: Spatial Encoding Algorithms of Resolution 2
» 20

10

2
) —a— Amplification Ratio 11.9%
= 160 —e— Z—-Encoding 118
X 150 Mo_ore—Enching %é E
c —4— Strip-Encoding 1155
g 80 ¢ + ¥ ¥ ¥ + +—149
g 11.3<
S 40| 11.25
z _ 11§
0 ‘ e o

10 10' 10

Tile Size (m)

Figure 3: Translate Geometry to Key Ranges

queries. Then, Section [3.3] describes how Pyro handles
moving hotspots with the block grouping algorithm.

3.1 Geometry Translation

In order to store spatial-temporal data, Pyro needs to cast
2D coordinates (x,y) into the one-dimensional key space.
A straightforward solution is to use a fixed number of bits
to represent x, and y, and append x after y to form the
spatial key. This leads to the Strip-encoding as shown in
Figure[2](a). Another solution is to use ZOrder-encoding
[7] that interleaves the bits of x and y. An example is
illustrated in Figure [2] (b). These encoding algorithms
divide the 2D space into m x m tiles, and index each tile
with a unique ID. The tile is the spatial encoding unit as
well as the unit of range scans. We define the resolu-
tion as log, (m), which is the minimum number of bits
required to encode the largest value of x and y.

In most cases, encoding algorithms inevitably break
a two-dimensional geometry into multiple key ranges.
Therefore, each geometry query may result in multiple
range scans. Each range scan requires a few indexing,
caching, and disk operations to process. Therefore, it
is desired to keep the number of range scans low. We
carry out experiments to evaluate the number of range
scans that a geometry query may generate. The resolu-
tion ranges from 25 to 18 over the same set of randomly
generated disk-shaped geometry queries with 100m ra-
dius in a 40,000, 000m x 40,000,000m area. The corre-
sponding tile size ranges from 1.2m to 153m. Figure 3]
shows the number of range scans generated by a single
geometry query under different resolutions. It turns out
that Strip-encoding and ZOrder-encoding translate a sin-
gle disk geometry to a few tens of range scans when the
tile size falls under 20m.

To reduce the number of range scans, we developed
the Geometry Translator module. The module em-
ploys the Moore-Encoding algorithm which is inspired
by the Moore curve from the space-filling curve fam-

www.manaraa.com

d;=0,do=0
counter-clockwise

Figure 5: Moore Encoding Unit

d;=0,do=1
clockwise

di=1,do=0
counter-clockwise

di=1,do=1
clockwise

ily [150 116,117, [18]]. A simple example is shown in Fig-
ure2](c). A Moore curve can be developed up to any res-
olution. As shown in Figure[d](a), resolutions 1 and 2 of
Moore encoding are special cases. The curve of resolu-
tion 1 is called a unit component. In order to increase the
resolution, the Moore curve expands each unit compo-
nent according to a fixed strategy as shown in Figure [3
Results plotted in Figure [3 show that Moore-Encoding
helps to reduce the number of range scans by 40% when
compared to ZOrder-Encoding. Moore curves may gen-
eralize to higher dimensions [19]], Figure |4 (b) depicts
the simplest 3D Moore curve of resolution 1. Implemen-
tations of the Moore encoding algorithm are presented in
Section[dl

3.2 Multi-Scan Optimization

The purpose of multi-scan optimization is to reduce read
amplification. Below, we first describe the phenomenon
of read amplification, and then we present our solution to
this problem.

3.2.1 Read Amplification
When translating geometry queries, range scans are gen-
erated respecting tile boundaries at the given resolution.
But, tile boundaries may not align with the geometry
query boundary. In order to cover the entire geometry,
data from a larger area is fetched. We call this phe-
nomenon Read Area Amplification. Figure |3| plots the
curve of read area amplification ratio, which is quantita-
tively defined as the total area of fetched tiles over the
area of the geometry query. The curves show that, solely
tuning the resolution cannot achieve both a small number
of range scans and a low ratio of read area amplification.
For example, as shown in Figure |3| restricting each ge-
ometry query to generate less than 10 scans forces Pyro
to fetch data from a 22% larger area. On the other hand,
limiting the area amplification ratio to less than 5% leads
to more than 30 range scans per geometry query. The
problem gets worse for larger geometries.

Moreover, encoding tiles are stored into fixed-size DB
blocksyonydisks;pwhereassPByblocks; ignore the bound-

aries of encoding tiles. An entire DB block has to be
loaded even when there is only one requested key-value
pair fallen in that DB Block, which we call the Read
Volume-Amplification. Please notice that, DB blocks are
different from DFS blocks. DB blocks are the minimum
read/write units in PyroDB (similar to HBase). One DB
block is usually only a few tens of KiloBytes. In con-
trast, a DFS block is the minimum replication unit in
PyroDFS (similar to HDFS). DFS blocks are orders of
magnitudes larger than DB blocks. For example, the de-
fault PyroDFS block size is 64MB, which is 1024 times
larger than the default PyroDB block size.

Besides read area and volume amplifications, using a
third-party indexing layer may also force the data store
to unnecessarily visit a DB block multiple times, espe-
cially for high resolution queries. We call it the Redun-
dant Read Phenomenon. Even though a DB block can
be cached to avoid disk operations, the data store still
needs to traverse DB block’s data structure to fetch the
requested key-value pairs. Therefore, Moore encoding
algorithm alone is not enough to guarantee the efficiency.

For ease of presentation, we use the term Read Ampli-
fication to summarize the read area amplification, read
volume amplification, and redundant read phenomena.
Read amplification may force a geometry query to load
a significant amount of unnecessary data as well as visit-
ing the same DB block multiple times, leading to a much
longer response time. In the next section, we present
techniques to minimize the penalty of read amplification.

3.2.2 An Adaptive Aggregation Algorithm
According to Figure [3| increasing the resolution helps
to alleviate read area amplification. Using smaller DB
block sizes reduces read volume amplification. However,
these changes require Pyro to fetch significantly more
DB blocks, pushing disk IO to become a throughput bot-
tleneck. In order to minimize the response time, Pyro
optimizes all range scans of the same geometry query
aggregately, such that multiple DB blocks can be fetched
within fewer disk read operations. There are several rea-
sons for considering IO optimizations in the DB layer
rather than relying on asynchronous IO scheduling in the
DFS layer or the OS layer. First, issuing a DFS read
request is not free. As a geometry query may poten-
tially translate into a large number of read operations,
maintaining those reads alone elicits extra overhead in
all three layers. Second, performance of existing IO op-
timizations in lower layers depend on the timing and
ordering of request submissions. Enforcing the perfect
request submission ordering in the Geometry Translator
is not any cheaper than directly performing the IO opti-
mization in PyroDB. Third, as PyroDB servers have the
global knowledge about all p-reads from the same ge-
ometry request, it is the natural place to implement 10
optimizations.

www.manaraa.com

@ 150 T T .

E 100} Measured e
? e Eoti mated .]
8 50 '
a —t -

10* 10° 10° 107

HDD P-Read Size (Byte)

3 40 : , , '
£ Measured S
20 | ——Estimated : 1
T
[a) I

10* 10° 10° 10’

SSD P-Read Size (Byte)
Figure 6: Storage Media Profile

Pyro needs to elaborately tune the trade-off between
unnecessarily reading more DB blocks and issuing more
disk seeks. Figure [6] shows the profiling results of
Hadoop-2.4.1 position read (p-read) performance on a
7,200RPM Seagate hard drive and a Samsung SM0256F
Solid State Drive respectively. In the experiment, we
load a 20GB file into the HDFS, and measure the latency
of p-read operations of varies sizes at random offsets.
The disk seek delay dominates the p-read response time
when reading less than 1MB data. When the size of p-
read surpasses 1MB, the data transmission delay starts
to make a difference. A naive solution calculates the
disk seek delay and the per-block transmission delay, and
directly compares whether reading the next unnecessary
block helps to reduce response time. However, the sys-
tem may run on different data storage media, including
hard disk drives, solid state drives, or even remote cloud
drives. There is no guarantee that all media share the
same performance profile. Such explicit seek delay and
transmission delay may not even exist.

In order to allow the optimized range scan aggregation
to work for a broader scenarios, we propose the Adaptive
Aggregation Algorithm (A3). A3 uses the p-read profiling
result to estimate delay of p-read operations. The pro-
filing result contains the p-read response time of various
sizes. A3 applies interpolation to fill in gaps between pro-
filed p-read sizes. This design allows the A3 algorithm to
work for various storage media.

Before diving into algorithm details, we present the
abstraction of the block aggregation problem. Suppose
a geometry query hits shaded tiles (3, 4, 12, 15) in Fig
[(c). For the sake of simplicity, assume that DB blocks
align perfectly with encoding tiles, one block per tile.
Figure [7| shows the block layout in the StoreFile. A3
needs to determine what block ranges to fetch in order
to cover all requested blocks, such that the response time
of the geometry query is minimized. In this example,
let us further assume each block is 64KB. According to
the profiling result shown in Figure [6] reading one block
takes about 9 ms, four blocks takes 14 ms, while read-
ing thirteen blocks takes 20 ms. Therefore, the optimal
solution reads blocks 3-15 using one p-read operation.

A3 works as follows. Suppose a geometry query trans-
latesytorassetsQqof range scansspBlock indices help to

[|
§o§1§zm5§6§7§s§9§1o§1113|14

. Requested Block D Fetched Block [1 Onep-read
Figure 7: Block Layout in a StoreFile

convert those range scans into another set B’ of blocks,
sorted in the ascending order of their offsets. By remov-
ing all cached blocks from B’, we get set B of n requested
but not cached blocks. Define S[i] as the estimated min-
imum delay of loading the first i blocks. Then, the prob-
lem is to solve S[n]. For any optimal solution, there must
exist a k, such that blocks k to n are fetched using a
single p-read operation. In other words, S[n] = S[k —
1]+ESTIMATE(k,n), where ESTIMATE(k,n) estimates
the delay of fetching blocks from k to n together based on
the profiling result. Therefore, starting from S[0], A* cal-
culates S[i] as min{S[k — 1] +ESTIMATE(k,7)|1 < k <i}.
The pseudo code of A3 is presented in Algorithm

Algorithm 1: A3 Algorithm

Input: blocks to fetch sorted by offset B
Output: block ranges to fetch R
S < an array of size |B|; initialize to e
P < an array of size [B|; S[0] < 0
for i< 1 ~ [B| do
for j«0~i—1do
k=i—j; s<ESTIMATE(k,i) +S[k—1]
L if s < S[i] then

PR N7 N IR S

LS[i}es; Pli] + k
8 i< [B;R«0
9 whilei > 0do
10 | R« RU(Pi],0);

11 return R

i+ Pli]—1

In Algorithm A3, the nested loop between line 3 — 7
leads to O(|B|?) computational complexity. If B is large,
the quadratic computational complexity explosion can be
easily mitigated by setting an upper bound on the posi-
tion read size. For example, for the hard drive profiled
in Figure @ fetching 107 bytes result in about the same
delay as fetching 5 x 10° bytes twice. Therefore, there is
no need to issue position read larger than 5 x 10° bytes.
If block size is set to 64K B, the variable j on the 5" line
in Algorithm|T]only needs to loop from 0 to 76, resulting
in linear computational complexity.

3.3 Block Grouping

Moore encoding concentrates range scans of one geom-
etry query into fewer servers. This may lead to perfor-
mance degradation when spatial-temporal hotspots exist.
To handle moving hotspots, a region needs to gracefully
split itself to multiple daughters to make use of resources
on multiple physical servers. Later, those daughter re-
gions may merge back after their workloads shrink.

In HBase, the split operation creates two daughter re-
gions on the same physical server, each owning reference

www.manaraa.com

Pre-split keys After a split

After another split

Replication 1 [Group 0] [Group 0] [Group 0] [] T_eogci:lnRzZII’i\:;r
Replication 2 ,-_-_-_-_-_ (eroup3)(Grow1) :__-_-_-_-_‘; (crows)(erowp1) :-_-_-_-_-_ (erowp3)(eower)) Grouped blocks
resatens {__ ; e eeemreeemas e meeeenan ; ol Speane

Figure 8: Split Example

files pointing back to StoreFiles of their parent region.
Daughter regions are later moved onto other servers dur-
ing the next cluster balance operation. Using reference
files on one hand helps to keep the split operation light,
but on the other hand prevents daughter regions from
taking advantage of data locality benefits. Because, af-
ter leaving the parent region’s server, the two daughter
regions can no longer find their region data in their lo-
cal disks until daughters’ reference files are materialized.
HBase materializes reference files during the next ma-
jor compaction, which executes at a very low frequency
(e.g., once a day). Forcing earlier materialization does
not solve the problem. It could introduce even more over-
head to the already-overwhelmed region, as materializa-
tion itself is a heavy operation.

An ideal solution should keep both split and materi-
alization operations light, allowing the system to react
quickly when a hotspot emerges. Below, we present our
design to achieve such ideal behaviors.

3.3.1 Group Based Replica Placement

Same as HBase, Pyro suggests users to perform pre-split
based on expected data distribution to gain initial load
balancing among region servers. Pyro relies on the ex-
pected data distribution to create more splitting keys for
potential future splits. Split keys divide StoreFiles into
shards, and help to organize DFS block replicas into
replica groups. PyroDFS guarantees that DFS blocks re-
spect predefined split keys. To achieve that, PyroDFS
stops writing into the current DFS block and start a new
one as soon as it reaches a predefined split key. This
design relies on the assumption that, although moving
hotspots may emerge in spatial-temporal applications,
the long-round popularity of different geographic regions
changes slowly. Results presented in evaluation Sec-
tion[5.T| confirm the validity of this assumption.

Assume blocks are replicated r times and there are
2"~ _1 predefined split keys within a given region. Split
keys divide the region key space into 2'~! shards, re-
sulting in r-2"~! shard replicas. Group 0 contains one
replica from all shards. Other groups can be constructed
following a recursive procedure:

1 Let ¥ be the set of all shards. If ¥ contains only one
shard, stop. Otherwise, use the median split key k
in ¥ to divide all shards into two sets A and B. Keys
of all shards in A are larger than k, while keys of all
shards in B are smaller than k. Perform step 2, and
then perform step 3.

2y Createsasnewsgroupytoseontaingone replica from all

shards in set A. Then, let ¥ «<— A, and recursively
apply step 1.

3 Let W < B, and then recursively apply step 1.
Replicas in the same group are stored in the same phys-
ical server, whereas different groups of the same region
are placed into different physical servers. According to
the construction procedure, group 1 starts from the me-
dian split key, covering the bottom half of the key space
(i.e., 2"=2 shards). Group I allows half of the regions
workload to be moved from group 0’s server to group 1’s
server without sacrificing data locality. Figure |8|demon-
strates an example of r = 3. PyroDFS is compatible with
normal HDFS workload whose replicas can be simply set
as no group specified. Section [3.3.2]explains why group
1 and 2 are placed at the end rather than in the beginning
of the StoreFile.

Figure([§|also shows how Pyro makes use of DFS block
replicas. The shaded area indicates which replica serves
workloads falling in that key range. In the beginning,
there is only one region server. Replicas in group O take
care of all workloads. As all replicas in group O are
stored locally in the region’s physical server, data local-
ity is preserved. After one split, the daughter region with
smaller keys stays in the same physical server, hence still
enjoys data locality. Another daughter region moves to
the physical server that hosts replica group 1, which is
also able to serve this daughter region using local data.
Subsequent splits are carried out under the same fashion.

To distinguish from the original split operation in
HBase, we call the above actions the soft split operation.
Soft splits are designed to mitigate moving hotspots.
Daughter regions created by soft splits eventually merge
back to form their parent regions. The efficiency of the
merge operation is not a concern as it can be performed
after the hotspot moves out of that region. Please notice
that the original split operation, which we call the hard
split, is still needed when a region grows too large to fit
in one physical server. As this paper focuses on geome-
try query and moving hotspots, all splits in the following
sections refer to soft splits.

3.3.2 Fault Tolerance

As a persistent data store, Pyro needs to preserve high
data availability. The block grouping algorithm pre-
sented in the previous section affects DFS replica place-
ment schemes, which in turn affects Pyro’s fault tol-
erance properties. In this section, we show that the
block grouping algorithm allows Pyro to achieve higher
data availability compared to the default random replica

www.manaraa.com

10°
T
E -v-/n=0.5%, b = 10
'E 104 ——/n=0.5%, b = 100
Ry -A-f/n=0.5%, b = 100
T - -fin=1%, b=10
510 5 ¥ fin=1%, b =100
& & | —%= fin=1%, b =100

—8
10 1

2 3
Number Grouped Replications
Figure 9: Unavailability Probability

placement policy in HDFS.

Pyro inherits the same HFile format [3]] from HBase to
store key-value pairs. According to HFile Format, meta
blocks are stored at the end of the file. Losing any DFS
block of the meta may leave the entire HFile unavail-
able, whereas the availability of key-value DFS blocks
are not affected by the availability of other key-value
DEFES blocks. This property makes the last shard of the
file more important than all preceding shards. Therefore,
we choose two different objectives for their fault toler-
ance design.

e Meta shard: Minimize the probability of losing any

DEFS block.
e Key-value shard: Minimize the expectation of the
number of unavailable DFS blocks.
Assume there are n servers in the cluster, and f nodes
are unavailable during a cluster failure event. For a given
shard, assume it contains b blocks, and replicates r times,
where g out of r replications are grouped. PyroDFS ran-
domly distributes the grouped g replications into g phys-
ical servers. The remaining (r — g)b block replicas are
randomly and exclusively distributed in the cluster. If
the meta fails, it must be the case that the g servers host-
ing the g grouped replications all fail (i.e., (g)/ (g)), and
at least one block in each r — g ungrouped replications
fails. Hence, the probability of meta failure is
f f=8)\?
0 (,_ (1) <;g>> W
(2) (9
Figure [9] plots how the number of grouped replications

g affects the failure probability. In this experiment, n
and r are set to 10,000, and 3 respectively. According
to [20, 21} 22|, after some power outage, 0.5%-1% of
the nodes fail to reboot. Hence, we vary f to be 50, and
100. The results show that the meta failure probability
decreases when g increases. Pyro sets g to the maximum
value for the meta shard, therefore achieves higher fault
tolerance compared to default HDFS where g equals 1.

For key-value shards, transient and small-scale fail-
ures are tolerable, as they do not affect most queries. It is
more important to minimize the scale of the failure (i.e.,
the number of unavailable DB blocks). The expected
failure scale is,

Pr[meta failure] =

E [failure scale|failure occurs] =

2

=
T

2O M ON
T
o/

Delay (ms)

00 1 '
Resolution (m)
Figure 10: Geometry Translation Delay

10

The failure scale decreases with the increase of grouped
replication number g. Therefore, placing replica groups
1 and 3 at the end of the StoreFile minimizes both the
meta shard failure probability and the failure scale of
key-value shards.

4 Implementation

PyroDFS and PyroDB are implemented based on HDFS-
2.4.1 and HBase-0.99 respectively.

4.1 Moore Encoding

As previously shown in Figure [d] and Figure[5] each unit
of Moore curve can be uniquely defined by the combina-
tion of its orientation (north, east, south, and west) and
its rotation (clockwise, counter-clockwise). Encode the
orientation with 2 bits, d1 and d0, such that 00 denotes
north, 01 east, 10 south, and 11 west. With more careful
observations, it can be seen that the rotation of a Moore
curve component unit completely depends on its orien-
tation. Starting from the direction shown in Figure @]
(a), the encodings in east and west oriented units rotate
clockwise, and others rotate counter-clockwise. With a
given integer coordinate (x,y), let x; and y; denote the
k' lowest bits of x and y in the binary presentation. Let
dy1dy o be the orientation of the component unit defined
by the highest » — k — 1 bits in x, and y. Then, the orien-
tation dj_ 1dix—1 o can be determined based on dy 1, dy o,
Xy, and yy [15} 116} 17, [18]].

diero = diadiodk | diidioxk
| diadeoye | diadiofi 3)
= dio(de1®3) | dio(diy®x) @)
dr—1,1 = didoxde | didioXion
| dirdioXik | diidioXion (5)

= dii(Goy) | (k®y) (doDxy) (6)

The formula considers all situations where d_1 and
di—1,1 should equal to 1, and uses a logic or to con-
nect them all. For example, the term d_k_rld_kyoyk states that
when the previous orientation is north (d_kﬁld_k’()), the cur-
rent unit faces east or west (dy_1 o = 1) if and only if
vx = 0. The same technique can be applied to determine
the final Moore encoding index .

o1 = dradeoXk | deadiodi
| dradioxk | diidioyi @)
= dio (di1 ©%) +dio (de1 @) (8)
Oy = KOy ©

Then, each geometry can be translated into range scans
using a quad tree. Each level in the quad tree corresponds
to a resolution level. Each node in the tree represents

www.manaraa.com

(b) (© (d)
Figure 11: Manhattan Taxi Pick-up/Drop-off Hotspots
a tile, which is further divided into four smaller tiles in
the next level. The translating algorithm only traverses
deeper if the geometry query partially overlaps with that
area. If an area is fully covered by the geometry, there is
no need to go further downwards. Figure [I0] shows the
delay of translating a Skm x Skm square geometry. The
delay stays below 11ms even using the finest resolution.

4.2 Multi-Scan Optimization

After converting a geometry query into range scans, the
multi-scan optimizer needs two more pieces of infor-
mation to minimize the response time: 1) storage me-
dia performance profiles, and 2) the mapping from key
ranges to DB blocks. For the former one, an administra-
tor may specify an HDFS path under the property name
hbase.profile.storage in the hbase-site.xml configuration
file. This path should point to a file containing multiple
lines of (p-read size, p-read delay) items, indicating the
storage media performance profile result. Depending on
storage media types in physical servers, the administra-
tor may set the property hbase.profile.storage to different
values for different HRegions. The file will be loaded
during HRegion initialization phase. For the latter one,
HBase internally keeps indices of DB blocks. Therefore,
Pyro can easily translate a range scan into a serious of
block starting offsets and block sizes. Then, those infor-
mation will be provided as inputs for the A algorithm.

4.3 Block Grouping
Distributed file systems usually keep replica placement
policies as an internal logic, maintaining a clean sep-
aration between the DFS layer and higher layer appli-
cations. This design, however, prevents Pyro from ex-
ploring opportunities to make use of DFS data replica-
tions. Pyro carefully breaks this barrier by exposing a
minimum amount of control knobs to higher layer appli-
cations. Through these APIs, applications may provide
replica group information when writing data into DFS. It
is important to choose the right set of APIs such that Py-
roDFS applications do not need to reveal too much about
details in the DFS layer. At the same time, applications
are able to fully make use of data locality benefits of all
block replicas.

In our design, PyroDFS exposes two families of APIs
which help to alter its internal behavior.

S E—
&ost - —— New Year/1 Week Later
o ’ ‘ - = = New Year/4 Hours Later
00 2 4 6 8

Event Number Ratio
Figure 12: Workload Heat Range

most significant 32 bits
of Linux timestamps

Row

Key [

Figure 13: Row Key

Sealing a DF'S Block: PyroDB may force PyroDFS

to seal the current DFS block and start writing into

anew DFS block, even if the current DFS block has
not reached its size limit yet. This API is useful be-
cause DFS block boundaries may not respect split-
ting keys, especially when there are many Store-

Files in a region and the sizes of StoreFiles are about

the same order of magnitude of the DFS block size.

The seal API family will help StoreFiles to achieve

full data locality after splits.

o Grouping Replicas: PyroDB may specify replica
namespace and replica groups when calling the
write API in PyroDFS. This usually happens dur-
ing MemStore flushes and StoreFile compactions.
Under the same namespace, replicas in the same
replica group will be placed into the same physi-
cal server, and replicas in different groups will be
placed into different physical servers. If there are
not enough physical servers or disk spaces, Py-
roDFS works in a best effort manner. The mapping
from the replica group to the physical server and
corresponding failure recovery is handled within
PyroDFS. PyroDB may retrieve a physical server
information of a given replica group using grouping
APIs, which allows PyroDB to make use of data lo-
cality benefits.

32 bits of
encoded location

5 Evaluation

Evaluations use NYC taxi dataset [9, [10] that contains
GPS pickup/dropoff location information of 697,622,444
trips from 2010 to 2013. The experiments run on a clus-
ter of 80 Dell servers (40 Dell PowerEdge R620 servers
and 40 Dell PowerEdge R610 servers) [23L124, 2526127,
28,129,130, 131}, 132]]. The HDEFS cluster consists of 1 mas-
ter node and 30 datanodes. The HBase server contains
1 master node, 3 zookeeper [33] nodes, and 30 region
servers. Region servers are co-located with data nodes.
Remaining nodes follow a central controller to generate
geometry queries and log response times, which we call
Remote User Emulators (RUE).

We first briefly analyze the NYC taxi dataset. Then,
Sections [5.2] [5.3] and [5.4] evaluate the performance im-
provements contributed by Geometry Translator, Multi-
Scan Optimizer, and Group-based Replica Placement re-
spectively. Finally, in Section[5.3] we measure the over-
all response time and throughput of Pyro.

www.manaraa.com

10 2
195
%] 1.8%
9] «
g X O D 178
8 IS 165
E 9_: 10° —e— Amplification Ratid1 5 £
S ° —4— Z-Encoding 4 4<rtu
g 2 10 Mopre—Enchmg 130
g S —— Strip-Encoding <
S 1.2
z Z 10/ \'\ ?g
\\7\ 119
10 -
10 1

10 16
Tile Size (m) Tile Size (m)

(a) radius = 1000m (b) 50m x 628m
Figure 14: Reducing the Number of Range Scans

5.1 NYC Taxi Data Set Analysis

Moving hotspot is an important phenomenon in spatial-
temporal data. Figure (a) and (b) illustrate the heat
maps of taxi pick-up and drop-off events in the Manhat-
tan area during a 4 hour time slot starting from 8:00PM
on December 31, 2010 and December 31, 2012 respec-
tively. The comparison shows that the trip distribution
during the same festival does not change much over the
years. Figure|l1|(c) plots the heat map of the morning
(6:00AM-10:00AM) on January 1st, 2013, which drasti-
cally differs from the heat map shown in Figure [IT] (b).
Figure[TT](d) illustrates the trip distribution from 8:00PM
to 12:00AM on July 4th, 2013, which also considerably
differs from that of the New Year Eve in the same year.

Figures [[1] (a)-(d) demonstrate the distribution of
spatial-temporal hotspots. It is important to understand
by how much hotspots cause event count to increase
in a region. We measure the increase as the ratio,
o colt g Pk MO e CDF on 16X 16 Manhattan
area is shown in Figure[I2] Although hotspots move over
time, the event count of a region changes within a reason-
ably small range. During New Year midnight, popularity
of more than 97% regions grow within four folds.

When loading the data into HBase, both spatial and
temporal information contribute to the row key. The en-
coding algorithm translates the 2D location information
of an event into a 32-bit spatial-key, which acts as the suf-
fix of the row key. Then, the temporal strings are parsed
to Linux 64-bit timestamps. We use the most significant
32 bits as the temporal-key. Each temporal key repre-
sents roughly a 50-day time range. Finally, as shown in
Figure [[3] the temporal-key is concatenated in front of
the spatial key to form the complete row key.

5.2 Moore Encoding

Figure [T4]shows how much Moore encoding helps to re-
duce the number of range scans at different resolutions
when translating geometry queries in a 40,000,000m X
40,000,000m area. Figures|14|(a) and (b) uses disk ge-
ometry and rectangle geometries respectively. The two
figures share the same legend. For disk geometries,
Moore encoding generates 45% fewer range scans when
compared to ZOrder-encoding. When a long rectangle is
in use, Moore encoding helps to reduce the number of
range scans by 30%.

0.8, 1 i

£ Resolution (m
£ 06 509 o
© (6) X ——78.125
© 208 —8—39.063
S04 5 —4—19.531
2 —6—Z-Encoding 207 —6—9.7656
E 0.2 —&— Moore-Encodin W 4.8824
w —&— Strip-Encoding 0 0.6 ——2.4414
oe—e—a 8 o = o ——1.2207

10° 10" ¢ %1 2 3 4 6

5
Read Redundancy
(b) S-Encoding # of Hits

Tile Size (m)

(a) Effective Data Ratio

1 1—*
I8 { W /
4 0.9 L 0.9
(@) (@)
2os 208
S 3
207 207
; 3
=06 N 0.6
0 1 2 3 4 5 6 % 1 2 3 a4 5 6

Read Redundancy Read Redundancy

(c) Z-Encoding # of Hits (d) M-Encoding # of Hits

Figure 15: Read Amplification Phenomenon

To quantify the read volume amplification, we encode
the dataset coordinates with Moore encoding algorithm
using the highest resolution shown in Figure 3] and pop-
ulate the data using 64KB DB Blocks. Then, the exper-
iment issues 1Km x 1Km rectangle geometries. Figure
(a) shows the ratio of fetched key-value pairs volume
over the total volume of accessed DB Blocks, which is
the inverse of read volume amplification. As the Strip-
encoding results in very high read volume amplification,
using the inverse helps to limit the result in interval [0, 1].
Therefore, readers can easily distinguish the difference
between Moore-encoding and ZOrder-encoding. We call
the inverse metric the effective data ratio. As Moore en-
coding concentrates a geometry query into fewer range
scans, and hence fewer range boundaries, it also achieves
higher effective data ratio.

Figures (b)-(d) plot the CDFs of redundant read
counts when processing the same geometry query.lt is
clear that the number of redundant reads increases when
using higher resolutions. Another observation is that,
Moore-encoding leads to large read redundancy. Thanks
to the multi-scan optimization design, this will not be
a problem, as all redundant reads will be accomplished
within a single DB block traverse operation.

5.3 Multi-Scan Optimization
In order to measure how A3 algorithm works, we load
data from the NYC taxi cab dataset using Moore encod-
ing algorithm, and force all StoreFiles of the same store
to be compacted into one single StoreFile. Then, the
RUE generates 1Km x 1Km rectangle geometry queries
with the query resolution set to 13. We measure the in-
ternal delay of loading requested DB blocks individually
versus aggregately.

The evaluation results are presented in Figure The
curves convey a few interesting observations. Let us look

www.manaraa.com

—o— Individually
"~ Aggregately (A”)

N
}—_

Response Time (s)
=

- ogom b
0 ‘ 3 ‘ 4 ‘ 5 ‘ 6 7
10 10 10 10 10
Block Size (Byte)
" Figure 16: Block Read Aggregation
£16 : ‘ ‘ ‘
£
£ 120
2
S 80/ —e— Pyro
g —=— Md-HBase
X 40 ; ‘ ‘ :
0 100 200 300 400 500
Time (s)

Figure 17: Response Time at Splitting Event

at the A3 curve first. In general, this curve rises as the
block size increases, which agrees with our intuition as
larger blocks lead to more severe read volume amplifica-
tion. The minimum response time is achieved at 8KB.
Because the minimum data unit of the disk under test
is 4KB, further decreasing block size does not help any
more. On the computation side, using smaller block size
results in larger input scale for the A3 algorithm. That
explains why the response time below 8KB slightly goes
up as the block size decreases. The “individually” curve
monotonically decreases when the block size grows from
1KB to 100KB. It is because increasing block size signif-
icantly reduces the number of disk seeks when the block
is small. When the block size reaches between 128KB
and 4MB, two facts become true: 1) key-value pairs hit
by a geometry query tend to concentrate in less blocks;
2) data transmission time starts to make impacts. The
benefits of reducing the number of disk seeks and the
penalties of loading DB blocks start to cancel each other,
leading to a flat curve. After 4MB, the data transmission
delay dominates the response time, and the curve rises
again. Comparing the nadirs of the two curves concludes
that A helps to reduce the response time by at least 3X.

5.4 Soft Region Split
To measure the performance of soft splitting, this ex-
periment uses normal scan queries instead of geome-
try queries, excluding the benefits of Moore encoding
and multi-scan optimization. A table is created for the
NYC’s taxi data, which initially splits into 4 regions.
Each region is assigned to a dedicated server. The
HBASE_HEAPSIZE parameter is set to 1GB, and the
MemStore flush size is set to 256MB. Automatic region
split is disabled to allow us to manually control the tim-
ing of splits. Twelve RUE servers generate random-sized
small scan queries.

Figure [17] shows the result. The split occurs at the
240" second. After the split operation, HBase suffers
fromyevenglongerresponse timesgltyis because daughter

10

region B does not have its region data in its own physical
server, and has to fetch data from remote servers, includ-
ing the one hosting daughter region A. When the group
based replication is enabled, both daughter regions read
data from local disks, reducing half of the pressure on
disk, cpu, and network resources.

5.5 Response Time and Throughput

We measure the overall response time and throughput
improved by Pyro compared to the state-of-the-art solu-
tion MD-HBase. Experiments submit rectangle geome-
try queries of size lkm x 1km and 100m x 100m to Pyro
and MD-HBase. The request resolutions are set to 13 and
15 respectively for two types of rectangles. The block
sizes vary from 8KB to 512KB. When using MD-HBase,
the remote query emulator initiates all scan queries se-
quentially using one thread. This configuration tries to
make the experiment fair, as Pyro uses a single thread to
answer each geometry query. Besides, experiments also
show how Pyro performs when using ZOrder-encoding
or/and A3 algorithm. Figures [18]and [19|plot experiment
results. The legend on the upper-left corner shows the
mapping from colors to block sizes. PyroM and PyroZ
represent Pyro using Moore- and ZOrder- encoding re-
spectively. PyroM-A3 and PyroZ-A> correspond to the
cases with the A algorithm disabled.

When using PyroM and PyroZ, the response times
grow with the increase of block size regardless of
whether the rectangle geometry is large or small. It is be-
cause larger blocks weaken the benefits of block aggrega-
tion and force PyroM and PyroZ to read more data from
disk. After disabling A>, the response time rises by 6X
for 1km x 1km rectangles, and 2X for 100m x 100m rect-
angles. MD-HBase achieves the shortest response time
when using 64KB DB blocks, which is 60X larger com-
pared to PyroM and PyroZ when handling 1km x lkm
rectangle geometries. Reducing the rectangle size to
100m x 100m shrinks the gap to 5X. An interesting phe-
nomenon is that using 512KB DB blocks only increases
the response time by 5% compared to using 64KB DB
blocks, when the request resolution is set to 13. How-
ever, the gap jumps to 33% if the resolution is set to 15.
The reason is that, higher resolution leads to more and
smaller range scans. In this case, multiple range scans
are more likely to hit the same DB block multiple times.
According to HFile format, key-value pairs are chained
together as a linked-list in each DB block. HBase has to
traverse the chain from the very beginning to locate the
starting key-value pair for every range scan. Therefore,
larger DB block size results in more overhead on iterat-
ing through the key-value chain in each DB block.

Figure [20] shows the throughput evaluation results of
the entire cluster. Pyro regions are initially partitioned
based on the average pick up/drop off event location dis-
tribution over the year of 2013. Literature [9] presents

www.manaraa.com

Response Time (ms,
-

286
119 135 210 100 198 233 257 7

PyroM PyroZ PyroM-A3 PyroZ-A3 Md-HBase
Figure 19: 100m x 100m Geometry Response Time

200

PyroM PyroZ PyroM-A3 PyroZ-A3 Md-HBase
Figure 18: 1Km x 1Km Geometry Response Time
£ 1200 ‘ ‘
2 1000 I s<B
= ooy B e,
8 600 —— H
2 400 i
0
[0}
24

—+— PyroM
Pyroz
—=— PyroM-A3
——PyroZ-A3
1 |—*— Md-HBase

1000

200 400 600 800
Throughput per Second
Figure 20: 100mx 100m Geometry Throughput
more analysis and visualizations of the dataset. During
the evaluation, each RUE server maintains a pool of em-
ulated users who submit randomly located 100m x 100m
rectangle geometry queries. The reason of using small
geometries in this experiment is that MD-HBase results
in excessively long delays when handling even a sin-
gle large geometry. The distribution of the rectangle
geometry queries follows the heat map from 8:00PM
to 11:59PM on December 31, 2013. The configuration
mimics the situation where an application only knows
the long-term data distribution, and is unable to predict
hotspot bursts. When setting 600ms to be the maximum
tolerable response time, Pyro outperforms MD-HBase by
10X.

6 Related Work

As the volume of spatial-temporal data is growing at an
unprecedented rate, pursing a scalable solution for stor-
ing spatial-temporal data has become a common goal
shared by researchers from both the distributed system
community and the database community. Advances on
this path will benefit a great amount of spatial-temporal
applications and analytic systems.

Traditional relational databases understand high di-
mensional data well [17} (18, 34} 35]] due to extensively
studied indexing techniques, such as R-Tree [36], Kd-
Tree [37], UB-Tree [38. 39], etc. Therefore, researchers
seek approaches to improve the scalability. Wang et
al. [40] construct a global index and local indices using
Content Addressable Network [41]. The space is parti-
tioned into smaller subspaces. Each subspace is handled
by a local storage. The global index manages subspaces,
and local indices manage data points in their own sub-
spacesspZhangyet,ala[42] proposesassimilar architecture

11

using R-tree as global index and Kd-tree as local indices.

From another direction, distributed system researchers
push scalable NoSQL stores [3}, 14} 15, 6, [13} 43| 144, i45]
to better understand high dimensional data. Distributed
key-value stores can be categorized into two classes.
One class uses random partition to organize keys. Such
systems include cassandra [4]], DynamoDB [5], etc.
Due to the randomness on key distribution, these sys-
tems are immune to dynamic hotspots concentrated in
a small key range. However, spatial-temporal data ap-
plications and analytic systems usually issue geometry
queries, which translate to range scans. Random parti-
tioning cannot handle range scans efficiently, as it can-
not extract all keys within a range with only the range
boundaries. Consequently, each range scan needs to
query all servers. Other systems, such as BigTable [13],
HBase [3]], couchDB [46], use ordered partitioning algo-
rithms. In this case, the primary key space is partitioned
into regions. The benefits are clear. As data associated
with a continuous primary key range are also stored con-
secutively, sorted partitioning helps to efficiently locate
the servers that host the requested key range.

The benefits of ordered partitioning encouraged re-
searchers to mount spatial-temporal application onto
HBase. Md-HBase [[7] builds an index layer on top of
HBase. The index layer encodes spatial information of
a data point into a bit series using ZOrder-encoding.
Then, a row using that bit series as key is inserted into
HBase. The ST-HBase [8]] develops a similar technique.
However when serving geometry queries, the index layer
inevitably translates each geometry query into multiple
range scans, and prevents data store from aggregately
minimizing the response time.

As summarized above, existing solutions either orga-
nize multiple relational databases together using some
global index, or build a separate index layer above some
general purpose distributed data stores. This paper, how-
ever, takes a different path by designing and implement-
ing a holistic solution that is specifically tailored for
spatial-temporal data.

7 Conclusion

In this paper, we present the motivation, design, imple-
mentation, and evaluation of Pyro. Pyro tailors HDFS
and HBase for high resolution spatial-temporal geometry
queries. In the DB layer, Pyro employs Moore encoding
and multi-scan optimization to efficiently handle geome-
try queries. In the DFS layer, group-based replica place-
ment policy helps Pyro to preserve data locality bene-
fits during hotspots dynamics. The evaluation shows that
Pyro reduces the response time by 60X on lkm X lkm
rectangle geometries and improves the throughput by
10X on 100m x 100m rectangle geometries compared to
the state-of-the-art solution.

www.manaraa.com

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

B. Sanou, “The world in 2013: Ict facts and
figures,” in International Communication Union,
United Nations, 2013.

S. Steiniger and E. Bocher, “An overview on cur-
rent free and open source desktop gis develop-
ments,” International Journal of Geographical In-

formation Science, vol. 23, no. 10, pp. 1345-1370.

L. George, HBase:
O’Reilly, 2011.

The Definitive Guide.

A. Lakshman and P. Malik, “Cassandra: A decen-
tralized structured storage system,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 2, pp. 35-40.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store,” in ACM SOSP,
2007.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo,
S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani, “Tao:
Facebook’s distributed data store for the social
graph,” in USENIX ATC, 2013.

S. Nishimura, S. Das, D. Agrawal, and A. E. Ab-
badi, “Md-hbase: A scalable multi-dimensional
data infrastructure for location aware services,” in
IEEE International Conference on Mobile Data
Management, 2011.

Y. Ma, Y. Zhang, and X. Meng, “St-hbase: A
scalable data management system for massive geo-
tagged objects,” in International Conference on
Web-Age Information Management, 2013.

B. Donovan and D. B. Work, “Using coarse gps
data to quantify city-scale transportation system
resilience to extreme events,” Transportation Re-
search Board 94th Annual Meeting, 2014.

New York City Taxi & Limousine Commission
(NYCT&L), “Nyc taxi dataset 2010-2013,” https:
/fpublish.illinois.edu/dbwork/open-data/, 2015.

T. White, Hadoop: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2009.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
google file system,” in ACM SOSP, 2003.

12

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R. E. Gruber, “Bigtable: A distributed stor-
age system for structured data,” in USENIX OSDI,
2006.

T. Harter, D. Borthakur, S. Dong, A. Aiyer, L. Tang,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Analysis of hdfs under hbase: A facebook mes-
sages case study,” in USENIX FAST, 2014.

M. Bader, Space-Filling Curves: An Introduc-
tion with Applications in Scientific Computing.
Springer Publishing Company, Incorporated, 2012.

J. Lawder, “The application of space-flling curves
to the storage and retrieval of multi-dimensional
data,” in Ph.D. Thesis, 2000.

K.-L. Chung, Y.-L. Huang, and Y.-W. Liu, “Ef-
ficient algorithms for coding hilbert curve of
arbitrary-sized image and application to window
query,” Inf. Sci., vol. 177, no. 10, pp. 2130-2151.

P. Venetis, H. Gonzalez, C. S. Jensen, and
A. Halevy, “Hyper-local, directions-based ranking
of places,” Proc. VLDB Endow., vol. 4, no. 5, pp.
290-301.

R. Dickau, “Hilbert and moore 3d fractal
curves,”’ http://demonstrations.wolfram.com/
HilbertAndMoore3DFractalCurves/, 2015.

A. Cidon, S. Rumble, R. Stutsman, S. Katti,
J. Ousterhout, and M. Rosenblum, “Copysets: Re-
ducing the frequency of data loss in cloud storage,”
in USENIX ATC, 2013.

R. J. Chansler, “Data availability and durability
with the hadoop distributed file system,” in The
USENIX Magzine, 2012.

D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-
A. Truong, L. Barroso, C. Grimes, and S. Quinlan,
“Availability in globally distributed storage sys-
tems,” in USENIX OSDI, 2010.

S.Li, S. Wang, F. Yang, S. Hu, F. Saremi, and T. F.
Abdelzaher, “Proteus: Power proportional mem-
ory cache cluster in data centers,” in IEEE ICDCS,
2013.

S. Li, S. Wang, T. Abdelzaher, M. Kihl, and
A. Robertsson, “Temperature aware power alloca-
tion: An optimization framework and case studies,”

Sustainable Computing: Informatics and Systems,
vol. 2, no. 3, pp. 117 — 127, 2012.

www.manaraa.com

https://publish.illinois.edu/dbwork/open-data/
https://publish.illinois.edu/dbwork/open-data/
http://demonstrations.wolfram.com/HilbertAndMoore3DFractalCurves/
http://demonstrations.wolfram.com/HilbertAndMoore3DFractalCurves/

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

S. Li, S. Hu, and T. FE. Abdelzaher, “The packing
server for real-time scheduling of mapreduce work-
flows,” in IEEE RTAS, 2015.

S. Li, T. F. Abdelzaher, and M. Yuan, “TAPA: tem-
perature aware power allocation in data center with
map-reduce,” in IEEE International Green Com-
puting Conference and Workshops, 2011.

S. Li, H. Le, N. Pham, J. Heo, and T. Abdelza-
her, “Joint optimization of computing and cooling
energy: Analytic model and a machine room case
study,” in IEEE ICDCS, 2012.

S. Li, S. Hu, S. Wang, L. Su, T. F. Abdelzaher,
I. Gupta, and R. Pace, “WOHA: deadline-aware
map-reduce workflow scheduling framework over
hadoop clusters,” in IEEE ICDCS, 2014.

M. M. H. Khan, J. Heo, S. Li, and T. F. Abdelzaher,
“Understanding vicious cycles in server clusters,”
in I[EEE ICDCS, 2011.

S. Li, S. Hu, S. Wang, S. Gu, C. Pan, and T. F. Ab-
delzaher, “Wattvalet: Heterogenous energy storage
management in data centers for improved power
capping,” in USENIX ICAC, 2014.

S. Li, L. Su, Y. Suleimenov, H. Liu, T. F. Abdelza-
her, and G. Chen, “Centaur: Dynamic message dis-
semination over online social networks,” in IEEE
ICCCN, 2014.

CyPhy Research Group, “UIUC Green Data Cen-
ter,” |http://greendatacenters.web.engr.illinois.edu/
index.html, 2015.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“Zookeeper: Wait-free coordination for internet-
scale systems,” in USENIX ATC, 2010.

J. K. Lawder and P. J. H. King, “Querying multi-
dimensional data indexed using the hilbert space-
filling curve,” SIGMOD Rec., vol. 30, no. 1, pp. 19—
24.

Q. Lv, W. Josephson, Z. Wang, M. Charikar,
and K. Li, “Multi-probe Ish: Efficient indexing

13

for high-dimensional similarity search,” in VLDB,
2007.

[36] A. Guttman, “R-trees: A dynamic index structure
for spatial searching,” in ACM SIGMOD, 1984.

[37] 1. Wald and V. Havran, “On building fast kd-trees
for ray tracing, and on doing that in o(n log n),” in
IEEE Symposium on Interactive Ray Tracing, 2006.

[38] R. Bayer, “The universal b-tree for multidimen-
sional indexing: General concepts,” in Proceed-
ings of the International Conference on Worldwide
Computing and Its Applications, 1997.

[39] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. El-
hardt, and R. Bayer, “Integrating the ub-tree into a
database system kernel,” in VLDB, 2000.

[40] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “In-
dexing multi-dimensional data in a cloud system,”
in ACM SIGMOD, 2010.

[41] S.Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable net-
work,” in ACM SIGCOMM, 2001.

[42] X.Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An
efficient multi-dimensional index for cloud data
management,” in International Workshop on Cloud
Data Management, 2009.

[43] B. Cho and M. K. Aguilera, “Surviving congestion
in geo-distributed storage systems,” in USENIX
ATC, 2012.

[44] H.Lim, D. Han, D. G. Andersen, and M. Kaminsky,
“Mica: A holistic approach to fast in-memory key-
value storage,” in USENIX NSDI, 2014.

[45] R. Geambasu, A. A. Levy, T. Kohno, A. Krishna-
murthy, and H. M. Levy, “Comet: An active dis-
tributed key-value store,” in USENIX OSDI, 2010.

[46] J. C. Anderson, J. Lehnardt, and N. Slater,
CouchDB: The Definitive Guide Time to Relax,
Isted. O’Reilly Media, Inc., 2010.

www.manaraa.com

http://greendatacenters.web.engr.illinois.edu/index.html
http://greendatacenters.web.engr.illinois.edu/index.html

	Introduction
	Design Overview
	Background
	Architecture

	System Design
	Geometry Translation
	Multi-Scan Optimization
	Read Amplification
	An Adaptive Aggregation Algorithm

	Block Grouping
	Group Based Replica Placement
	Fault Tolerance

	Implementation
	Moore Encoding
	Multi-Scan Optimization
	Block Grouping

	Evaluation
	NYC Taxi Data Set Analysis
	Moore Encoding
	Multi-Scan Optimization
	Soft Region Split
	Response Time and Throughput

	Related Work
	Conclusion

